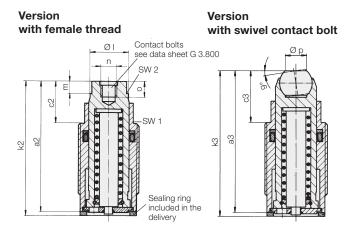


B 1.460


~ -

Threaded-Body Cylinder single acting with spring return max. operating pressure 500 bar

~

. .

Description

These threaded-body cylinders can be threaded directly into tapped holes in the fixture down to the hex-section of the cylinder body. Spacings between cylinders can be minimised when cylinders are arranged in a row, since the oil is fed through drilled passages in the fixture. Sealing is made with the supplied sealing ring at the bottom of the location hole.

A long piston guide in combination with an O-ring/back-ring seal provides trouble-free operation.

Material

Piston material: casehardening steel, hardened Cylinder body: free-cutting steel

Important notes!

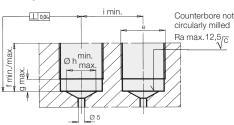
Threaded-body cylinders must not be subjected to a load in retracted position.

Cylinders have to be protected against direct influences of aggressive cutting lubricants and coolants.

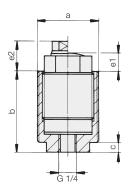
A version with very little leakage equipped with a double-wiper, that has the same technical data, can be found on data sheet B 1.461.

Operating conditions, tolerances and other data see data sheet A 0.100.

Accessories and application examples


see reverse page

Piston Ø d	[mm]	12	16	20	25	32
Stroke	[mm]	10	12	15	16	20
Clamping force at	[kN]	1.1	2.0	3.1	4.9	8
500 bar	[kN]	5.7	10.1	15.7	24.6	40
Spring return force. min.	[N]	28	50	78	123	200
Min. operating pressure	[bar]	10	10	10	10	10
Oil volume per 10 mm stroke	[cm ³]	1.13	2.01	3.14	4.91	8.04
a1	[mm]	37	45.5	55	58	85
a2	[mm]	44	51.5	64.5	67	96
a3	[mm]	44.5	53	68.5	71	98
b	[mm]	7	8	8	11	12
c1	[mm]	7	10	11	13.5	17
c2	[mm]	14	16	20.5	22.5	28
c3	[mm]	14.5	17.5	24.5	26.5	30
Ød	[mm]	12	16	20	25	32
е	[mm]	M 22x1.5	M 26x1.5	M 30x1.5	M 38x1.5	M 48x1.5
f min./max.	[mm]	16/31	20/36	24/45	28/46	42/70
g max.	[mm]	8	9	9	11	13
Ø h min./max.	[mm]	9/12	12/16	14/20	18/25	22/32
i min.	[mm]	25	30	35	43	55
k1	[mm]	38	46.5	56	59.5	87
k2	[mm]	45	52.5	65.5	68.5	98
k3	[mm]	45.5	54	69.5	72.5	100
ØI	[mm]	11	15	19	23	30
m	[mm]	5.5	5.5	6	7	9
n	[mm]	M 6	M 6	M 8	M 8	M 12
0	[mm]	6	6	8	8	12
Øp	[mm]	7.2	7.2	10.5	10.5	20.0
R	[mm]	20	25	32	40	50
SW 1	[mm]	17	22	24	32	41
SW 2	[mm]	10	13	17	19	24
Seating torque	[Nm]	40	50	60	80	225
Weight	[kg]	0.08	0.15	0.22	0.38	0.97
Version without female thread		1460-000	1461-000	1462-000	1463-000	1464-000
Version with female thread		1460-001	1461-001	1462-001	1463-001	1464-001
Version with swivel contact bolt		1460-010	1461-010	1462-010	1463-010	1464-010
Additional seal		3000-840	3000-841	3000-842	3000-843	3000-527


. .

.

Porting details

Accessories

Application examples

Mounting bodies

For cylinder no.

nections.

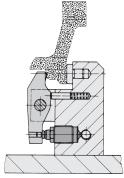
а

b

С

e1 e2

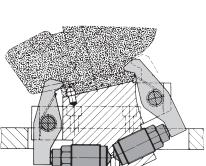
SW


Weight [kg]

Lock nut DIN 1804

Part no.

Part no.


The opposite figure shows a multiple clamping fixture for clamping of small parts. The cylinders can be arranged in a clamping bar or yoke.

Workholding with the use of reversing levers is particularly suited for workpieces which have to be clamped high above the fixture base plate. The force-loop closed within a limited fixture component space eliminates bending forces from entering the fixture base plate. The reversing lever allows easy adaptation of the lever ratio to the clamping force required.

0 TP 1 B \odot ۲ \odot đ ۲ © (\$) 0 đ I 6 \odot ю \odot Œ ₿Ŧ \odot \odot ٢ ۲ ۲ G \odot

The above multiple clamping fixture is equipped with threaded-body cylinders with swivel contact bolts. The 3° incline of the threadedbody cylinders effects a low-clamping force of approx. 5% of the clamping force. On plane clamping surfaces swivel contact bolts obtain little surface pressure on the effective points.

This example shows a detail of a clamping fixture for exhaust manifolds, where under limited space conditions the use of reversing levers allows clamping of workpieces with intricate contours.

1462-0XX

M 38x1.5

58

7

11

20.5

0.23

3467-086

M 38x1.5

3300-088

27

1463-0XX

M 45x1.5

59

13.5

22.5

0.28

3467-087

3300-326

M 45x1.5

32

7

1464-0XX

M 60x1.5

85

8

17

28

41

0.8

3467-093

M 60x1.5

3300-411

The installation of threaded-body cylinders directly into fixture base plates and walls becomes possible by means of mounting bodies, which are provided with porting for threaded fitting con-

1461-0XX

M 32x1.5

49

7

10

16.5

0.12

3467-085

M 32x1.5

3301-019

24

1460-0XX

M 28x1.5

44

7

7

14

22

0.1

3467-084

M 28x1.5

3301-423

2